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Particle impact damping (PID) is a means for achieving high structural damping by the
use of a particle-"lled enclosure attached to the structure in a region of high displacements.
The particles absorb kinetic energy of the structure and convert it into heat through inelastic
collisions between the particles and the enclosure, and amongst the particles. In this work,
PID is measured for a cantilevered aluminium beam with the damping enclosure attached to
its free end; lead particles are used in this study. The e!ect of acceleration amplitude and
clearance inside the enclosure on PID is studied. PID is found to be highly non-linear.
Perhaps the most useful observation is that for a very small weight penalty (about 6%), the
maximum speci"c damping capacity (SDC) is about 50%, which is more than one order of
magnitude higher than the intrinsic material damping of a majority of structural metals
(O(1%)). Driven by the experimental observations, an elementary analytical model of PID is
constructed. A satisfactory comparison between the theory and the experiment is observed.
An encouraging result is that in spite of its simplicity, the model captures the essential
physics of PID.

( 2000 Academic Press
1. INTRODUCTION

Particle impact damping (PID) is a form of impact damping in which particles of various
shapes, sizes, and materials are inserted into an enclosure attached to a structure. Particle-
to-enclosure collisions arise due to a clearance, d, between the particles and the enclosure
walls. As a result of these collisions, momentum is exchanged between the structure and the
particles, and kinetic energy is converted to heat. Additional energy dissipation can also
occur due to frictional losses and inelastic particle-to-particle collisions. The unique aspect
of PID is that high damping is achieved by absorbing the kinetic energy of the structure as
opposed to the more traditional methods of damping where the elastic strain energy stored
in the structure is converted to heat. Viscoelastic materials have long been used for
increasing damping in structures. However, they lose their e!ectiveness in low- and
high-temperature environments and degrade over time. Particle impact damping o!ers the
potential for the design of an extremely robust passive damping technique with minimal
impact on the strength, sti!ness and weight of a structure. With a proper choice of particle
materials (for example, lead, steel, or tungsten carbide), this technique is essentially
independent of temperature and is very durable. Also, this technique appears to be an
improvement over single-particle impact dampers that su!er from impact-induced high
noise levels and surface degradations as well as high sensitivity to container size and input
excitation.

Several studies have been conducted relating to the e!ectiveness of particle impact
damping in attenuating undesirable vibrations. Papalou and Masri [1] studied the
behavior of particle impact dampers in a horizontally vibrating single-degree-of-freedom
0022-460X/00/210093#26 $35.00/0 ( 2000 Academic Press



94 R. D. FRIEND AND V. K. KINRA
(s.d.o.f.) system under random excitation. They studied the in#uence of mass ratio, particle
size, container box dimensions, excitation levels, and direction of excitation. Damper
container design criteria were provided for optimal e$ciency based upon reduction in
system response. Cempel and Lotz [2] used a simpli"ed energy approach to measure the
in#uence of various particle packing con"gurations on the damping loss factor of a s.d.o.f.
system under horizontal forced vibration. Popplewell and Semergicil [3] observed
that a plastic &&bean bag'' "lled with lead shot exhibited greater damping e!ectiveness
and &&softer'' impacts than a single lead slug of equal mass. The aforementioned
studies were con"ned to frequencies at or below 20 Hz. Panossian [4, 5] studied
non-obstructive particle damping in the modal analysis of structures at a higher frequency
range of 300}5000 Hz. This method consists of drilling small diameter cavities at
appropriate locations in a structure (for example, turbine blades) and partially or fully "lling
the holes with particles of di!erent materials and sizes (steel shot, tungsten powder,
nickel powder, etc.). Signi"cant decrease in structural vibrations was observed even when
the holes were completely "lled with particles and subjected to a pressure as high as
240 atms.

The primary objective of this work is to measure non-linear particle impact damping in
the context of free vibration of a cantilevered beam in the vertical plane. Lead powder was
used in this study. The e!ect of gravity, vibration amplitude, and particle "ll ratio (or
clearance) on the structural damping were studied. The secondary objective is to construct
an elementary analytical model to predict particle impact damping. In spite of its deceptive
simplicity, the model was found to be surprisingly e!ective in capturing the essential physics
of particle impact damping. A satisfactory agreement between theory and experiment was
observed.

2. THEORETICAL ANALYSIS

2.1. EQUATIONS OF MOTION

In this section an elementary model of particle impact damping is developed. A schematic
of the beam and the damping enclosure that contains the particles is drawn to scale in
Figure 1(a). The beam is idealized as a standard Euler}Bernoulli beam (Figure 1(b)). The
well-known fourth order partial di!erential equation of motion is used to describe its
motion [6]. Neglecting its rotary inertia, the enclosure is idealized as a point mass attached
to the tip of the beam; in the following we shall refer to it as the end mass, m

e
. The beam is

assumed to vibrate in its fundamental mode, / (x; m
e
). The mode shape is normalized in such

a manner that /(¸; m
e
)"1 [7]. Let u be the circular frequency of the fundamental mode,

and t
b
the intrinsic material damping of the beam material.

We will "nd it convenient to reduce the continuous beam to an equivalent s.d.o.f. system
(see Figure 1(c)) [8]. The point x"¸ is an obvious choice for this reduction. The reduced
mass of the beam and the end mass is given by

M"m
e
#c P

L

0

[/(x ; m
e
)]2dx, (1)

where c is the mass per unit length of the beam. Often, M is referred to as the primary mass
of the equivalent s.d.o.f. system. The reduced sti!ness of the beam at x"¸ is given by

K"EI P
L
[/A(x;m

e
)]2 dx, (2)
0



Figure 1. (a) A schematic of the beam and enclosure (drawn to scale). (b) A model of the beam with end mass, m
e
.

(c) The equivalent single-of-freedom (s.d.o.f.) system. The displacement, u, of the mass, M, is measured from its
equilibrium position with the particle mass, m, resting on the bottom of the enclosure. The origin of the co-ordinate
z is also located at the equilibrium position of M.
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where /A"d2//dx2, and EI is the #exural sti!ness of the beam. The reduced damping
coe$cient of the beam is given by

c"
t
b

2n
JKM . (3)

Then, the damping ratio, f"c/c
cr
"c/(2JKM)"t

b
/4n. Since we use the exact mode

shape in computing M and K, the undamped natural frequency of the equivalent s.d.o.f.

system, JK/M, is exactly equal to the undamped natural frequency of the "rst mode of the
beam, u; the same is true for the damped natural frequency. Moreover, for the beam used in
this study, the damped natural frequency may be approximated by its undamped natural
frequency, i.e., u

d
+u. To give the reader a feel for the numerical values involved, for the

particular beam studied in this work, the reduced mass of the beam is 24)1% of its actual
mass. (See the Experimental Procedures section for a description of the beam.) Moreover,
K/(3EI/¸3)"1)01, i.e., the reduced sti!ness of the vibrating beam is very nearly equal to its
static sti!ness. (3EI/¸3 is the well-known static sti!ness of a cantilevered beam loaded at its
tip, x"¸.)

In most vibration problems the mass of the beam remains constant. Therefore, the static
de#ection due to the weight of the beam also remains constant and is neglected. For the case
at hand, there are times when the particles move in contact with the beam, and at other
times they move separately from the beam. It is assumed that all the particles move as
a lumped mass, m, i.e., the relative motion between the particles is neglected. This makes the
end mass, m

e
, a two-valued function which, in turn, makes /(x;m

e
), M, K, and u two-valued

functions as well. Moreover, the static de#ection due to gravity is no longer a constant.
Therefore, the static de#ection must be taken into account in the analysis of the problem.
With this observation, the analogy between the continuous beam (Figure 1(b)) and its
equivalent discrete s.d.o.f. system (Figure 1(c)) is complete.

Let the schematic in Figure (1c) represent the static equilibrium position of the primary
mass including the particles. We take the equilibrium position as the origin of a co-ordinate
z; the displacement of the primary mass, u, is also measured from this point. The motion of
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the s.d.o.f. system is governed by

M
d2u

dt2
#c

du

dt
#Ku"F(t)

or
d2u

dt2
#2fu

du

dt
#u2u"

F(t)

M
, (4)

where F(t) is a two-valued (piecewise constant) function of time: F(t)"0 when the particles
are moving separately from the beam; F(t)"!mg, when the particles are in contact with
beam, where g is the acceleration due to gravity. We consider these two cases separately.

2.1.1. State 1: the particles move in contact with the beam

Subscript ( )
1

will be used to denote all quantities in State 1. Let m
encl

be the mass of the
enclosure and the beam of length ¸

e
/2. Then, the end mass, m

e1
"m

encl
#m. Let /

1
, M

1
, K

1
,

u
1
, and F

1
"!mg be the corresponding quantities. Let u

0
and v

0
be, respectively, the

displacement and velocity of M
1
at any time t taken to be zero (t"0). For t'0, the motion

is given by

u
1
(t)"Cu0 cos (u

1
t)#A

v
0

u
1

#

t
b

4n
u
0B sin (u

1
t)D e(~t

b
@4n)u1t . (5)

2.1.2. State 2: the particles move separately from the beam

Subscript ( )
2

will be used to denote all quantities in State 2. Then the end mass is
m

e2
"m

encl
. Let /

2
, M

2
, K

2
, u

2
, and F

2
"0 be the corresponding quantities. Once again,

let u
0

and v
0

be, respectively, the displacement and velocity of M
2

at time t"0. For t'0,
the motion is given by

u
2
(t)"

mg

K
2

#CAu0!
mg

K
2
B cos (u

2
t)#A

v
0

u
2

#

t
b

4n Au0!
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K
2
BB sin (u

2
t)De(!t

b
/4n)u

2
t, (6)

where the term, mg/K
2
, is recognized as the static de#ection due only to the mass of the

particles, m.

2.2. ENERGY DISSIPATED AND DAMPING

Next, we derive an expression for the energy dissipated during an impact between the
particles (m) and the primary mass (M

2
). It is envisioned that, after an impact, individual

particles travel at di!erent velocities. However, it is assumed that all particles move as
a single particle, and that its motion is con"ned to the z direction. In reality (considering the
"rst impact of the particles with the ceiling, for example), the particles belonging to the top
layer impact the ceiling "rst, the particles belonging to the second layer impact those
belonging to the "rst layer, and so on. Clearly, the &&impact'' takes some "nite amount of
time, however small. However, at present, we have no knowledge of the duration of the
impact. Therefore, of necessity, we have to assume that the impact is instantaneous. As we
shall see, in spite of this assumption, the comparison between theory and experiment is quite
reasonable. The mechanisms of energy dissipation are inelastic collisions and frictional
sliding amongst the particles, and between the particles and the enclosure walls. Since we
cannot estimate the amount of energy dissipated by each of these mechanisms, we &&wrap''
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all of the mechanisms of energy dissipation into an &&e!ective coe$cient of restitution'', R.
Consider a collinear impact between m and M

2
. Let v be de"ned as the velocity in the

positive z direction. Let v~
p

(v`
p
) and v~

2
(v`

2
) be the velocities of the particle and the primary

mass before(after) the impact. Then R is de"ned as

R"!

(v`
p
!v`

2
)

(v~
p
!v~

2
)
, 0)R)1. (7)

Applying the conservation of linear momentum, the velocities after the impact are given by

v`
2
"

(1!Rk) v~
2
#k(1#R)v~

p
(1#k)

and v`
p
"

(1#R) v~
2
#(k!R)v~

p
(1#k)

, (8a, b)

where the mass ratio is de"ned as k"m/M
2
. Invoking the conservation of energy, the

kinetic energy converted into heat during the impact may be shown to be

D¹"

1

2
(1!R2)

m

1#k
(v~

p
!v~

2
)2. (9)

We shall estimate R by minimizing the di!erence between theory and experiment using the
Gauss' method of least squares.

In the following, we describe a simple methodology by which the motion of the particles
and the primary mass can be tracked for all t'0. Figure 13 contains time domain
representations of the motion of the particle and the primary mass for a representative value
of R"0)4 and various initial amplitudes. Reference will be made to this "gure throughout
this work. At time t"0, let the particles be in contact with the primary mass (Case 1). Let
M

1
be released from rest (i.e., the initial velocity, v

0
"0) with an initial displacement,

u
0
"!;

0
. The motion of the primary mass and particles is described by equation (5). The

particles remain in contact with the -oor of the enclosure until the acceleration of M
1

along
the negative z direction exceeds the acceleration due to gravity, i.e., separation occurs when

(!a)'g. (10)

For later use, it is noted that if the particles had been moving in contact with the ceiling of
the enclosure, the separation would have occurred when

(!a)(g. (11)

Together, equations (10) and (11) will be called the separation criterion. Throughout this
work we will use equations (5) and (equations (10) or (11)) for calculating the moment of
separation. However, it is interesting as well as instructive to note that for a perfectly elastic
beam (t

b
"0), equation (5) and equation (10) or (11) lead to a simple expression for the

displacement at which separation occurs, namely, u
s
,g/u2

1
. As an example, at 20 Hz,

u
s
"O(1 mm); at 1 kHz, u

s
"O (0)1 lm). (When the intrinsic damping in the beam is small,

as is the case in our experiments, the exact u
s
was found to be very close to g/u2

1
.) Moreover,

if g"0 (for space applications) or for motion in the horizontal plane, u
s
"0 regardless of

t
b
. Let v

s
be the &&launch velocity'' of the particles at the time of separation, t

s
. After

separation, the particles &&free fall'' under the in#uence of gravity, and their motion is given
by

u
p
(t)"u

s
#v

s
(t!t

s
)!1

2
g (t!t

s
)2, t

s
(t(t

1
, (12)
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where t
1

is the instant at which the particles su!er their "rst impact. After separation, the
motion of M

2
is given by equation (6). There are two di!erent scenarios for the "rst impact

to occur: (1) if the clearance, d, is su$ciently small such that the &&ceiling impact criterion'',
u
p
"u

2
#d, is satis"ed, then the "rst impact of the particle will be with the ceiling;

otherwise (2) the "rst impact will occur with the #oor when the &&#oor impact criterion'',
u
p
"u

2
, is satis"ed. The transition occurs when the particle makes an osculating contact

with the ceiling, i.e., when the displacement trajectories of the particle and the ceiling have
a common tangent at the point of contact. This is shown graphically in Figure 13(b).

We now consider the motion after the "rst impact. At the risk of stating the obvious, for
any RO0, the particles will continue to bounce ad in"nitum. In order to limit the number
of impacts to some reasonable value without introducing an appreciable error in computing
W, we introduce the following approximation. Subsequent to an impact, let e be the ratio of
the speed of the particle relative to the primary mass to the speed of the primary mass, i.e.,
e"(v`

p
!v`

2
)/v`

2
. Let d"1

2
m ((v`

p
)2!(v`

2
)2)/1

2
M

1
(v`

2
)2; d is a dimensionless measure of the

kinetic energy of the particles that is ignored during this approximation. As eP0, dP0, but
the number of impacts becomes intractably large. By trial and error it was found that
e"0)05 resulted in a reasonable compromise between the number of impacts and the error
in computing W. When e"0)05, d is merely 0)01, which can be safely neglected. Therefore,
for e'0)05, the motion after an impact is calculated by equations (6) and (12). When
e)0)05, then v`

p
is set equal to v`

2
, i.e., in the analysis the particles are not allowed to have

any more rebounds. The subsequent motion of the primary mass plus the particles (M
1
) is

calculated by using equation (5). The separation criterion (equation (10) or (11)) is used to "x
the moment of the next separation, and the process continues.

Traditionally, the speci"c damping capacity is de"ned as W"D=/=, where D= is the
stored elastic energy converted into heat during one cycle, and= is the maximum stored
elastic energy during the cycle. It is customary to view = as a function of strain tensor
(hence the expression &&strain energy density'' for =). In the context of particle impact
damping, it is more appropriate to de"ne speci"c damping capacity as

W"D¹/¹, (13)

where D¹ is the kinetic energy converted into heat during one cycle, and ¹ is the maximum
kinetic energy during the cycle. With reference to Figure 13(a), we de"ne a cycle to be the
duration between two successive maxima, <, of the primary mass velocity curve, v(t), rather
than the displacement or the acceleration curves. Then, ¹ is maximum at the start of a cycle
and is given by

¹"1
2

M
1
<2. (14)

Next, we calculate the energy dissipated during the ith cycle, D¹
i
"¹

i
!¹

i`1
. If the

particles are in contact with the enclosure at both velocity peaks, then

D¹
i
"1

2
M

1
(<2

i
!<2

i`1
). (15)

Substituting equations (14) and (15) into equation (13),

W
i
"

<2
i
!<2

i`1
<2

i

. (16)

When the particles are not in contact with the enclosure at either of the velocity peaks,
equations (15) and (16) are no longer valid. Then, the energy dissipated during a cycle must
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be computed by summing the energy dissipated due to all of the impacts (N) during the cycle
by the use of equation (9), i.e.,

D¹
i
"

N
+
n/1

D¹(n). (17)

Once again W
i
is computed by substituting equations (14) and (17) into equation (13). Since,

as we shall see in Figure 6, particle impact damping is highly non-linear, W
i

must be
determined for each cycle. The traditional methods*where damping is measured by
averaging over a large number of cycles*would greatly reduce the usefulness of the data so
obtained.

2.3. DIMENSIONAL ANALYSIS

A dimensional analysis using the Buckingham pi theorem was carried out to reveal the
appropriate dimensionless parameters. The energy dissipated per cycle by the particles, D¹,
is written as

D¹"f
1
(m, d, g, M

1
, u

1
, ;; R). (18)

The physical quantities M
1
, u

1
, and ; are chosen to reduce the number of independent

variables from eight to "ve:

W"f
2
(k, a~1, C~1; R), (19)

where W"D¹/1
2
M

1
(u

1
;)2"dimensionless energy dissipated per cycle, k"m/(M

1
!

m)"m/M
2
"mass ratio, a";/d"dimensionless displacement amplitude, and

C";u2
1
/g"dimensionless acceleration amplitude, in units of g.

The semicolon separating R is used to emphasis that R is obtained by &&curve-"tting'' the
experimental data to the model. When we present experimental results, we will "nd
extensive use for the dimensionless clearance

D,

du2
1

g
"

C

a
. (20)

For PID in a gravitational "eld we will view

W"f (k, D, C; R). (21)

On the other hand, in situations where g drops out of equation (18)*in a zero-gravity
environment, when g@;u2

1
, or for motion in the horizontal plane*equation (19) reduces

to

W"f (k, a; R). (22)

Finally, for presenting the time domain data we introduce a dimensionless time as q"u
1
t.

3. EXPERIMENTAL PROCEDURES

A schematic of the test set-up is shown in Figure 2. Both the enclosure and the beam are
made up of 3003 aluminum alloy (Young's modulus, E"70 GPa and density"2)7 g/cm3).



Figure 2. (a) A schematic of the experimental arrangement. (b) A magni"ed view of the particles inside the
enclosure (drawn to scale).
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The beam dimensions are: length, ¸"25)4 cm, width"3)18 cm, and height"0)23 cm. The
mass of the enclosure is 19)4 gs, and its interior dimensions are: diameter"2)54 cm, and
height"0)254 cm, 0)508 cm, or 0)762 cm. The particle bed depth, s, serves only to de"ne the
total mass of the particles, m"oAs, where o is the mass per unit volume occupied by the
particles and A is the cross sectional area of the interior of the enclosure. The clearance, d, is
the distance between the top of the bed of particles at rest and the ceiling of the enclosure.

At time t"0, the beam is given a tip displacement,;
0
, released from rest, and allowed to

decay freely; the beam vibrates in its fundamental mode. An OFV300 Polytec laser
vibrometer is used to measure the velocity of the enclosure. A piece of lightweight
retrore#ecting tape is attached to the top center of the enclosure for re#ecting the incident
laser beam. Using the well-known Doppler e!ect and the principle of heterodyne
interferometry, the velocity is measured by frequency demodulation to an extremely high
resolution of 1 lm/s. In our experiments, the velocity amplitude ranges from 30 to
2000 mm/s. Consequently, the minimum ratio of the measured velocity amplitude to the
velocity resolution (&&signal-to-noise ratio'') is 3]104. Data acquisition is triggered at t"0,
and the decaying waveform is collected with a Yokogawa DL708 Digital Processing
Oscilloscope (DPO). The DPO has a 16-bit vertical resolution (1 part per 65 536),
a maximum digitizing rate of 105 points/s (i.e., a 10 ls interval) and a maximum record
length of 4]106 points. We use a digitizing rate of 2000 points/s. For a nominal frequency
of 18 Hz observed in this study, this translates to 111 points/cycle.

Lead powder was the material used in this study. The powder consisted of irregularly
shaped particles (commercially known as &&lead dust'') whose average size was 230 lm. The
total mass of particles was kept constant at 4)0 g throughout this experimental
investigation. Thus, the mass ratio, k"0)12, was kept constant. Three di!erent clearances
were investigated: d"1)27, 3)81 and 6)35 mm (or D

1
"1)62, D

2
"4)87, and D

3
"8)11,

respectively). For each clearance, the test was repeated with 18 di!erent initial amplitudes in
the range 1(C(25. For each test the frequency, u, was determined from the time interval
between successive zero crossings averaged over all of the cycles in that test. Without the
particles the calculated frequency is u

2
"18)86 Hz. The average of eight measurements is

u
2
"18)61 Hz, and the standard deviation is 0)07 Hz. With particles the calculated
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frequency is u
1
"17)82 Hz; the measured frequency is u

1
"17)77 Hz, and the standard

deviation is 0)15 Hz. Energy dissipated per cycle, D¹
i
, and damping, W

i
, were determined

for each cycle using equations (15) and (16) respectively.

4. EXPERIMENTAL RESULTS

A comparison of typical experimental waveforms with and without lead powder is shown
in Figure 3. A dramatic increase in the attenuation due to the presence of particles is clearly
evident. The kinetic energy dissipated per cycle with and without particles, derived from
Figure 3 using equation (15), is presented in Figure 4 as a function of <, the velocity at the
beginning of each cycle. The corresponding damping, calculated using equation (16) is
shown in Figure 5 as a function of dimensionless acceleration amplitude, C "<u/g"
;u2/g. For completeness, the root strain or the strain amplitude at the base of the
cantilevered beam is also shown. It is interesting to note that in Figure 4, for the case of the
beam with particles, D¹ continues to increase monotonically with <, while the
corresponding damping in Figure 5 rises dramatically to a peak and then decreases
gradually. This is merely a consequence of the fact that the kinetic energy (denominator in
equation (13)) is proportional to the square of the velocity. (As a minor but interesting aside,
we calculate the increase in temperature of the lead particles during one cycle under the
assumption that all of the energy converted into heat is absorbed by the lead particles:
10 mJ absorbed by 4 g of lead corresponds to an increase in temperature of merely 0)02K.)

Because these results are a compilation of 18 individual tests each with a di!erent starting
point, the path of the individual tests shown in Figures 4 and 5 is traced by thin solid lines.
A striking observation is that at a particular value of C, W depends (albeit slightly) on
whether that point is the "rst cycle of a test that was started at C, or (say) the "fth cycle of
Figure 3. A comparison of typical experimental velocity waveforms:**, without particles;=, with particles
(d"3)81 mm).



Figure 4. Kinetic energy dissipated per cycle versus velocity amplitude: s, without particles; *d*, with
particles (d"3)81 mm).
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a test that was started at a higher value of C: W is not a single-valued function of C. Since the
variations in W are rather small, we will use the following approach to make W a single-
valued function of C. In the analysis, W will be calculated only for the "rst cycle of
a &&simulated test'' (the rest of the motion will be ignored) and assigned to the value of C at
the start of the &&simulated test''. The calculated W will be compared with the W measured at
that value of C; the latter could correspond to any cycle of the (actual) test. The reasons for
this decision will be discussed in some detail later in the paper.

In the absence of particles, the measured damping is due to the intrinsic material damping
of the aluminum beam, t

b
. In Figure 5, the best-"t straight line through these data are

shown as a thick solid line. The damping due to particles alone (PID) is determined by
subtracting t

b
from the total damping with particles. For the same mass ratio, k"0)12, the

particle impact damping, W, is shown in Figure 6 for three values of dimensionless
clearance, namely, D

1
"1)62, D

2
"4)87, and D

3
"8)11. The damping in the ,rst cycle of

each test is marked by the corresponding "lled symbols. The maximum damping is
W

max
"0)5. This is more than an order of magnitude greater than the intrinsic material

damping of most structural metals (aluminum, steel, brass, etc.) which is O (1%).
From equation (10) it follows that if (!a)(g, i.e., C)1, the particles always remain in

contact with the #oor, i.e., the calculated PID is zero for any choice of k, D or R. With this in
mind we re-examine Figure 6. As CP1`, W decreases very rapidly. In the range, 0(C(1,
W is very small. However, W is not exactly equal to zero. We o!er a plausible conjecture for
this observation. In the data presented in Figure 6, all but one test were started at some
value of C'1. Even when C falls below one, the particles may still be &&bouncing around'' in
the enclosure leading to a small but non-zero W for C)1. To test this conjecture, one test



Figure 5. Speci"c damping capacity of the system versus dimensionless acceleration amplitude: s, without
particles; *d*, with particles;=, the least-squares-"t straight line, t

b
"0)0035C#0)015. (d"3)81 mm.)
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was especially conducted where the starting C was chosen to be slightly less than unity. The
results are presented at the top of Figure 6 on a highly magni"ed scale: W"O(0)1%) which
is comparable to the measurement errors. This supports our conjecture.

5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENT

5.1. PID IN THE ABSENCE OF THE CEILING

5.1.1. Numerical results

A striking feature of the data in Figure 6 is that in the range 0(C(1)75, W is
measurably identical for D

1
, D

2
, and D

3
, and that in the range 0(C(2)5, W is identical for

D
2

and D
3
. Moreover, at C"1)75, 2)5, and 3)5 respectively, W (C, D

1
), W(C, D

2
), and

W(C,D
3
) reaches a maximum. In the following, we will show that these maxima occur when

the particles impact the ceiling.
For a "xed clearance D (or d, since u

1
and g are "xed in the present work), C (or ;) can

always be chosen su$ciently large such that upon leaving the #oor, the "rst impact of the
particles occurs with the ceiling. Similarly, C can always be chosen su$ciently small such
that the particles reach their apogee before impacting the ceiling and*accelerated by
gravity*stay abreast of the ceiling during their downward journey. Under these
circumstances, the "rst impact occurs with the #oor; this is illustrated in Figure 13(a). The
two regimes of C are separated by a value of C for which the particles su!er an osculating
contact with the ceiling, i.e.,

u
p
"u

2
#d and du

p
/dt"du

2
/dt. (23)



Figure 6. Speci"c damping capacity, due to particles only, for three clearances. All cycles: e, D
1
"1)62; s,

D
2
"4)87; £, D

3
"8)11. The "rst cycle of each test is indicated by a "lled symbol.
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This is illustrated in Figure 7(a), and we will call it the osculation condition. Evidently, this
critical value of C depends upon D, i.e., C"f (D) or D"f (C); we shall refer to this pair as
(Dcr, Ccr ). Let q6 "q!q

s
be the time measured from the moment of separation; recall that

q"u
1
t. Let g"u

1
/u

2
, j"mg/K

2
, and q"(C2!1)1@2. Then du

p
/dt"du

2
/dt leads to the

transcendental equation

v
s

u
2
;

cos (q6 )#C
j
;
!

u
s
;
!f

v
s

u
2
;D sin (q6 )"efq6 A

v
s

u
2
;
!

g2q6
C B . (24)

For an elastic beam, equation (24) reduces to

gq cos (q6 )#A
jC

;
!1B sin (q6 )"g (q!gq6 ). (25)

For a "xed C, equation (24) "xes the time of osculation. Next, the condition u
p
"u

2
#d

leads to the following equation for D:

D"

u
s
C

;
#

v
s
C

u
2
;

q6 !
1

2
(gq6 )2!

jC
;

!Ce~fq6 CA
u
s
;
!

j
;B cos (q6 )#A

v
s

u
2
;
#fA

u
s
;
!

j
;BB sin (q6 )D.

(26)

For an elastic beam this reduces to

D"1#gqq6 !
1

2
(gq6 )2!

jC

;
!A1!

jC

;B cos (q6 )!gq sin (q6 ). (27)
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For the particular f measured in this work, the solution of equations (24) and (26) is plotted
in Figure 7(b). The three particular values of D used in this work are indicated by "lled
circles. For a "xed D, if C(C cr, the particles are oblivious of the ceiling and, therefore, W is
independent of D. With this, we return to Figure 6. It now becomes obvious why W is the
same for D

1
, D

2
, and D

3
for 0(C(1)75, and W is the same for D

2
and D

3
for 0(C(2)5.

Moreover, d drops out of equation (18), and equation (19) reduces to

W"f
3
(k, C;R). (28)

For completeness, the fact that W"0 when C(1 is shown as the shaded area. Finally,
when C(C cr, we can remove the ceiling with impunity. The subscript ( )

0
will be used to

denote all results obtained in the absence of a ceiling. The subscripts ( )
1
, ( )

2
, and ( )

3
, will

be used to denote results corresponding to D
1
, D

2
, and D

3
, respectively.

We begin by analyzing the damping due only to the "rst impact with the #oor; this will be
denoted by WFID

0
. A kinematic analysis is presented "rst. For several discrete values of C the

normalized displacement and velocity of the primary mass and the particles are plotted in
Figure 8. The particle trajectories are terminated at the instant of the "rst impact. When
C"2)86, the primary mass executes one full cycle prior to the impact. For C'2)86, the "rst
impact occurs during the second cycle. For later use, this particular value of C will be
denoted by C (2)

0
; then, C(2)

0
"2)86. Similarly, when C'5)94, the "rst impact occurs during

the third cycle, and C (3)
0

"5)94, and so on.
For no particular reason, taking R"0 (i.e., a completely plastic impact with no rebound),

WFID
0

calculated by using equations (9) and (13) is plotted in Figure 9. The "rst impact
Figure 7. (a) Normalized displacement of the primary mass (**) and of the particles (=). C"Ccr
2
"2)55,

D"D
2
"4)87, R"0. (b) A graph of the osculation condition. The three particular clearances used in the

experiments are indicated by "lled circles.
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damping (FID) for any other value of R is given in terms of FID for R"0 by

WFID
0

(R)"(1!R2)WFID
0

(0). (29)

The velocities just before the impact, v~
p

and v~
2
, are also shown. With references to

equations (9) and (13), WFID
0

is proportional to (v~
r
)2, where the normalized impact velocity,

v~
r
"(v~

p
!v~

2
)/u

1
;

0
. For convenience of the reader, in Figure 8, for one value of C"2

v~
p

and v~
2

are connected by a dark vertical line whose length equals v~
r
. As expected, as

C increases from unity, WFID
0

P0 increases. However, an extremely counter-intuitive
observation is that as CP4)38, WFID

0
P0. The reasons become immediately clear when we

examine the velocity curves: at C"4)38, there is an &&osculating impact'' (v~
r
"0). The

launched particle is recaptured by the beam with no loss of energy. (This situation is
reminiscent of how a good cricket player catches a fast-moving ball with his bare hands.) At
C"2)49, W reaches its "rst maximum; this is denoted by WFIDmax1

0
. Here, v~

p
/u

1
;

0
and

v~
2
/u

1
;

0
are (roughly) equal and opposite, and their magnitudes are (roughly) equal to

unity. (This is reminiscent of a head-on collision of two identical cars moving with equal
speeds, which, as we know, causes maximum damage.) If we set v~

p
/u

1
;

0
"v~

2
/u

1
;

0
"1
Figure 8. Normalized displacement and velocity of the primary mass (**) and of the particles (=) for
various initial amplitudes up to the "rst impact. No ceiling.
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(exactly), from equations (9) and (13) we obtain a closed-form expression

WFIDmax
0

"4(1!R2)
k

(1#k)2
. (30)

For a given R and k, this is the maximum damping that can be obtained for an enclosure
with no ceiling. As we shall see, this equation captures the functional dependence of W on
R and k.

Let the weight penalty be de"ned as

b"
mass of the particles

mass of the cantilever beam
"

m

M
b

. (31)

Obviously, one would like to achieve a given W with a minimum b. By way of example,
suppose we wish to achieve a maximum W"50%. For a cantilevered beam without an end
mass, the reduced mass, M

2
"0)25M

b
, where M

b
"c¸; therefore,

k"m/M
2
"4m/M

b
"4b. Taking R"0, from equation (30), WFIDmax

0
+50% when

k"20%, i.e., b"5%: A small weight penalty (5%) results in an order of magnitude larger
maximum damping (50%). As a minor aside, when R"0, WFIDmax

0
"100% (total cessation

of all motion) can be achieved for k"1, i.e., for a weight penalty of only 25%. In our
experiments, for k"0)12 and M

b
"c¸#m

encl
, a maximum W"50% was achieved for
Figure 9. Speci"c damping capacity due to the "rst impact only WFID
0

, and normalized velocity of the primary
mass, v~

2
, and of the particles, v~

p
, just prior to the "rst impact. No ceiling. R"0.
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b+6%. (It will be shown that including a ceiling can result in a maximum W'WFIDmax.)
Next, we con"ne our attention to the range of C where the "rst impact occurs during the
"rst cycle, 1(C)C (2)

0
, and examine W

0
in more detail. In the following calculations,

a representative value of R"0)4 was used.
With reference to Figure 10(a), for a su$ciently small C, all impacts occur during the "rst

cycle, i.e., the particles begin to move with the primary mass (or, the particles come to
relative rest against the primary mass) before the end of the "rst cycle. For a representative
value of C"1)7 in this range, the trajectories are shown in Figure 10(a); the total number of
impacts, N"4. Identical results for W

0
are obtained by using either equations (16) or

equations (13) and (17). As C is gradually increased, a point comes where the last impact
occurs in the second cycle; this happens when C"CA

0
"1)74. The results of these

calculations are shown as the thickest line in Figure 11 (marked R"0)4).
In the range CA

0
)C)C(2)

0
, the "rst impact continues to occur in the "rst cycle, but at

a minimum, the last impact occurs after the "rst cycle. For a representative value of C"1)9,
the trajectories are shown in Figure 10(b). Since the particles are no longer in contact with
the primary mass at the end of the "rst cycle, equation (16) cannot be used to calculate W

0
.

Instead, W
0

was calculated by the use of equations (13) and (17). At C"CB
0
"1)94, there is

a visible jump discontinuity in W
0
; this may be explained as follows. Every time an impact

crosses over from the "rst cycle to the second cycle, there is a jump discontinuity in W
0
.

However, for C(CB
0
, these jumps are too small to be graphically visible. On the other hand,

at C"CB
0
, we go from two impacts to only one impact during the "rst cycle. Therefore, the

decrease in W is large enough to be visible.
Figure 10. Displacement histories of the primary mass (**) and of the particles (=). No ceiling: R"0)4. (a)
C"1)7, (b) C"1)9, (c) C"2)0.

0
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For CB
0
(C)C (2)

0
, only the "rst impact occurs during the "rst cycle and, therefore,

identically

W
0
,WFID

0
, CB

0
(C)C(2)

0
. (32)

For comparison purposes, WFID
0

in the range 1(C)C (2)
0

is reproduced from Figure 9 as
a dashed line. The maximum damping occurs at C+2)4. (If the beam had been perfectly
elastic, the maximum damping would have occurred at C+2)5.)

In order to study the sensitivity of W
0
to R, in Figure 11 results are also plotted for R"0,

0)2, 0)4, and 0)6. When R"0, there is no rebound, and W
0

and WFID
0

become identical. As
R increases, the characteristic points, CA

0
and CB

0
, occur at successively lower values of C. In

the range 1(C(CA
0
, all impacts occur in the "rst cycle and, therefore, W

0
is independent of

R. Substituting W
0

for WFID
0

(0) in equation (29),

WFID
0

(R)"(1!R2)W
0
, 1(C(CA

0
. (33)

For comparison purposes, WFID
0

for R"0)4 is shown in the range 1(C(CB
0
as the dashed

line, and this proves to be a good approximation to W
0
. For R"0)4, using equation (33), the

damping due to the "rst impact is 84% of the total damping.
Up to this point, for each initial amplitude, C, only the damping in the ,rst cycle has been

calculated. The "rst cycle damping, W
0
, as a function of initial amplitude, C, has been given

in Figure 11. For each initial amplitude in the range 1(C(CA
0
, if the motion of the

primary mass is followed past the "rst cycle, and W
0

in the successive cycles is computed,
Figure 11. Damping for the case of no ceiling:=, all impacts, R"0)4; ) ) ) ) ) ), "rst impact only (WFID
0

), R"0)4;
**, in#uence of R on W

0
.
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then W
0

will coincide with the "rst cycle damping curve. This occurs because the particles
have come to relative rest with the primary mass at the end of each cycle before being
launched in the next cycle. In the range CA

0
)C)C2

0
, the particles are not in contact with

the primary mass at the end of the "rst cycle. For each initial amplitude, C, the damping in
the subsequent cycles will be di!erent than the "rst cycle damping curve until the amplitude
falls below CA

0
, at which point the damping in subsequent cycles will equal "rst cycle

damping. Consequently, signi"cant scatter in the results is observed in the range
CA
0
)C)C2

0
because the damping in the subsequent cycles follows a di!erent path for each

initial C. To circumvent this problem, in the sequel, the theoretical W at any C will mean the
damping calculated during the "rst cycle of the motion starting with that C.

5.1.2. Comparison between numerical results and experiment

In Figure 6, the measured ,rst cycle damping is indicated by "lled symbols. In the range
0(C(4, these data are reproduced in Figure 12. This particular range of C was chosen to
include all three C cr, namely, Ccr

1
"1)75, Ccr

2
"2)55, and Ccr

3
"3)23; these are indicated by

dashed vertical lines. The prediction of the model using equations (13) and (17) (damping in
the absence of the ceiling due to all impacts) is shown as the thick solid line covering the
range 0(C(C2

0
"2)84. (Recall that for C'C2

0
, the ,rst impact occurs in the second

cycle.) The model was curve-"tted to the combined data for all three D
j

in the range
0(C(C cr

j
, j"1, 2, 3; the best "t was obtained for R"0)53. In view of the simplicity of the

model, the comparison between theory and experiments is considered remarkably good.
Recall that at C"C cr

j
the particles hit the ceiling. It is further reassuring to note that at

Ccr
j

the theory and the experiment begin to deviate signi"cantly. As a minor aside, the
calculated "rst impact damping in the absence of the ceiling, WFID

0
, for the same value of

R"0)53 is plotted as a dashed line.

5.2. PID WHEN THE FIRST IMPACT OCCURS AT THE CEILING

5.2.1. Numerical results
Through a comparison of the theoretical W

0
(no ceiling) and the experimental W (with

ceiling) for D"D
1

in Figure 12, it is clear that the presence of the ceiling has a signi"cant
in#uence on W. In this section, this in#uence is explored analytically. Using equations (13)
and (17) and R"0)4, the damping is calculated as a function of C. For brevity, W (C, D

1
),

W(C, D
2
), and W(C, D

3
) will be designated as W

1
, W

2
, and W

3
respectively. These are shown in

Figure 14 as the thickest solid lines. Intuitively, we had expected that accounting for an
additional impact at the ceiling would always result in a higher damping: W

2
and W

3
do

increase; W
1
, however, decreases rather sharply, and this may be explained as follows. The

contribution to W
1

of the impacts with the ceiling, WC
1
, and of the #oor, WF

1
, is shown in

Figure 14 as lines of medium thickness. For C'C cr
1
, clearly the rate of decrease of WF

1
is

greater than the rate of increase of WC
1
. The reason for the rapid decrease in WF

1
is that the

impact with the ceiling signi"cantly alters the moment of the second impact at the #oor
which, in turn, results in a signi"cant decrease in the normalized impact velocity, and hence
in WF

1
. Time-domain representations of the impacts for C"C cr

1
"1)75 and for a slightly

greater C"2)3, shown in Figures 13(b) and (c), respectively, illustrate this point. Turning
our attention to W

2
and W

3
, the e!ect of the "rst impact with the ceiling is to increase the

total damping. Once again, the ceiling and #oor contributions to the total damping were
examined in detail for each of these cases. The rate of decrease of WF was found to be smaller
than the rate of increase of WC. Therefore, no general conclusions (i.e., conclusions that are



Figure 12. Comparison of theoretical damping with no ceiling to experimental results.=, W
0
, equations (13)

and (17); ) ) ) ) ) ), WFID
0

, "rst impact only; e, D
1
"1)62; d, D

2
"4)87; £, D

3
"8)11. Best "t R"0)53.
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independent of clearance, D) can be drawn concerning the e!ect of the "rst impact with the
ceiling on the total damping.

As C increases, the number of impacts that occur with the #oor and the ceiling also
increase. With reference to Figure 14, the kinks in the curves correspond to those values of
C where an additional impact occurs. Turning our attention to the corresponding data in
Figure 6, we note that these kinks are not observed in the experiments. We o!er a plausible
explanation for this observation. It is conjectured that in our experiments, the particles
are traveling as a &&cloud'' rather than a single point mass as assumed in the model.
Consequently, an impact between the particles and the #oor (or the ceiling) occurs over
some "nite time period resulting in a smoothing of the kinks.

5.2.2. Comparison between numerical results and experiment

For the case of no ceiling, the experimental and theoretical results were compared in
Figure 12. Now, we compare theoretical results (from Figure 14) with the measured ,rst
cycle damping in each test (from Figure 6) for D

j
, C'C cr

j
, j"1, 2, 3; this is shown in Figure

15. The best "t for W
1
, W

2
, and W

3
was obtained for R"0)48, 0)48, 0)39, respectively. We

were pleasantly surprised to observe how well the theory captures the essential physics of
PID for three substantially di!erent clearances. Next, we examine in more detail the results
in the vicinity of C"C cr

j
, j"1, 2, 3, to determine how well the measurements capture the

transition across C cr
j
. Experimental results for the "rst cycle damping in Figure 6 and

theoretical results from Figures 12 and 15 are reproduced in Figure 16 in the range
0(C(5. The experimental results very clearly capture the sudden changes in W at
C"C cr.
j



Figure 13. Displacement and velocity histories of the primary mass (**) and of the particles (=). D"1)62,
R"0)4. (a) C"1)5, (b) C"Ccr

1
"1)75, (c) C"2)3, (d) C"12.
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Figure 13. Continued.
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Figure 14. Damping versus C for three clearances: W
1
, W

2
, W

3
correspond to D

1
, D

2
, and D

3
, respectively.

R"0)4.=, total damping;==, individual contributions to W
1

from ceiling and #oor; **, W
0
, no ceiling.
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5.3. PID AT HIGH VALUES OF a

Next, we examine the asymptotic behavior of W in the limit as C becomes very large
compared to C cr

j
. In Figures 13(a)}13(d), D is held constant at D

1
"1)62 (C cr

1
"1)75),

whereas C varies from 1)5 to 12. In Figures 13(a) and 13(b) where C)C cr
1

and in Figure 13(c)
where C is slightly greater than C cr

1
, the acceleration of gravity greatly in#uences the motion

of the particle. However, in Figure 13(d), where C"12, the decrease in the velocity of the
particle between impacts is negligibly small compared to its &&launch velocity'', v

s
. Therefore,

without introducing an appreciable error, we can ignore the e!ect of gravity on the motion
of the particle as well as the primary mass. An immediate consequence of this assumption is
that v

p
" constant between impacts. Then g drops out of the list of independent variables in

equation (18), the number of dimensionless variables decreases from four to three, and
equation (19) reduced to W"f (k, a;R). Since k is "xed in our experiments, and assuming
that R is a constant, W may be viewed as a function of a single variable a";/d (or
a"C/D).

In order to test the validity of this assumption, we combine the ,rst cycle damping in
Figure 6 for C*Ccr

j
, D

j
, j"1, 2, 3, and plot it against a"C/D; this is shown in Figure 17.

(When the results were plotted on a linear scale, the curves were extremely cluttered at small
a; hence the use of the log-linear plot.) It is remarkable that three distinct sets of data
collapse into a single set during the transformation from W (C, D) to W(C/D) over a rather
large range of C and D. Next, we take the analytical results in Figure 15 for C*C cr

j
, D

j
,

j"1,2,3 and re-plot it as a function of a in Figure 17. The three curves, indicated by thin
solid lines, become very close to each other, and are virtually indistinguishable for a'3.



Figure 15. Comparison of theoretical damping to experimental results for three clearances:=, W
1
, W

2
, and

W
3

correspond to D
1
, D

2
, and D

3
respectively;**, W

0
, no ceiling; e, D

1
"1)62, best "t R"0)48; d, D

2
"4)87,

best "t R"0)48; £, D
3
"8)11, best "t R"0)39
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We conclude that our assumption}that the e!ects of gravity may be neglected for
a su$ciently high a*appears to be well justi"ed for a'3.

Encouraged by this observation, we now construct an even simpler model for predict-
ing W when a is large. In the absence of gravity, the separation displacement, u

s
"0.

The moment of separation then becomes u
1
t
s
"n/2. If we measure the normalized

time from the moment of separation, h,(u
1
t!n/2), then the moment of the "rst

impact with the ceiling, h
1
, depends only on a and is given by the simple transcendental

equation

h
1
!sin h

1
"a~1. (34)

By examining the contribution to W from all of the impacts with the ceiling separately, it
was found that the "rst impact damping, WFID

0
, accounts for a large part of the total

damping during the "rst half cycle. (See equation (33) and the discussion that follows.) In an
e!ort to keep the model simple, we now ignore the successive impacts with the ceiling and
&&fold'' the energy dissipated during these impacts into the e!ective coe$cient of restitution,
R. In Figure 13(d), after the particle comes to a relative rest against the ceiling of the primary
mass, the particle is launched for the second time during the cycle. In the absence of gravity,
this separation occurs when the primary mass crosses the position u

2
"0. The motion in the

second half of the cycle is antisymmetric with respect to the motion in the "rst half, and the
contribution to W from the #oor, WF, equals to that of the ceiling. This can be see
graphically in Figure 14: as C increases, the WC and WF approach each other. It follows that



Figure 16. Comparison of theoretical damping to experimental results near Ccr:=, W
1
, W

2
, and W

3
corres-

pond to D
1
, D

2
, and D

3
respectively; ) ) ) ) ) ), WFID

0
; e, D

1
"1)62; d, D

2
"4)87; £, D

3
"8)11.
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the total W"2WC. From equations (9) and (13) we obtain

W"2(1!R2)
k

(1#k)2
(1!cos h

1
)2, (35)

where h
1

is the moment of the "rst impact with the ceiling given in terms of a in
equation (34).

Predictions of equation (35) for R"0)48 (same as in the exact calculations) are plotted as
the thick solid line in Figure 17. The comparison between the high a model and the exact
theory is considered to be very good. Therefore, the exact analysis can be adequately
approximated by equation (35) for a'3. For the design of a new particle impact damper.
the high a model may be used to obtain a &&quick'' but fairly reasonable estimate of W.

In Figure 17, as a increases, W asymptotically approaches zero. We o!er a physically
appealing explanation for this observation. At very high a, after the particle separates from
the #oor of the primary mass, it is very quickly transferred to the ceiling. The particle
velocity remains nearly constant, and the primary mass has not had time to decelerate
appreciably. This results in a normalized impact velocity, v~

r
, that is very small (a very &&soft''

impact occurs). The damping, which is proportional to the square of v~
r

, is also very small.
This process repeats itself during the second half of the cycle.

6. CONCLUSION

Traditionally, attempts to increase damping have largely focussed on the dissipation of
the stored elastic energy in the structure. In this work, we take a di!erent approach by



Figure 17. Comparison of theoretical damping to experimental results as a function of dimensionless displace-
ment amplitude. R"0)48.=, high a model (equation (35)); **, exact solution (equations (13) and (17)); r,
D
1
"1)62; d, D

2
"4)87; ., D

3
"8)11.
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focusing on the dissipation of the kinetic energy. It is shown that, by the method of particle
impact damping, a very high value of speci"c damping capacity (W+50%) can be achieved
for a very small weight penalty (b+6%). The damping was found to be highly non-linear,
i.e., amplitude dependent. Therefore, a model of the damping was constructed that allows us
to calculate cycle by cycle damping. In spite of the simplicity of the model, the comparison
between theory and experiment was found to be remarkably good.
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APPENDIX A: NOMENCLATURE

a acceleration of the primary mass, M
c reduced damping coe$cient of the beam
d clearance of the enclosure
g acceleration due to gravity ("9)81 m/s2)
K reduced sti!ness of the beam
¸ length of the beam
m mass of the particles
m

e
end mass of the beam

m
encl

mass of the enclosure
M primary mass (reduced mass of the beam)
M

b
mass of the beam

R e!ective coe$cient of restitution
¹ maximum kinetic energy during a cycle
D¹ kinetic energy converted into heat during one cycle
u displacement of the primary mass, M
u
p

displacement of the particle mass, m
u
s

displacement at which particles separate from #oor
; displacement amplitude of the primary mass
v velocity of the primary mass, M
v
p

velocity of the particle mass, m
v~
r

dimensionless relative impact velocity just prior to impact
v
s

velocity at which particles separate from #oor (launch velocity)
< velocity amplitude of the primary mass
a dimensionless displacement amplitude (";/d)
D dimensionless clearance, ("du2

1
/g)

(Dcr, Ccr) (D, C ) which satisfy the osculation condition
b weight penalty, ("m/M

b
)

/ fundamental mode shape of the beam
c mass per unit length of the beam
C dimensionless acceleration amplitude (";u2

1
/g)

CA
0

amplitude above which particles are no longer in contact with the primary mass at the
end of the "rst cycle

CB
0

amplitude above which only a single impact occurs in the "rst cycle
k mass ratio ("m/M

2
)

q dimensionless time
u undamped circular natural frequency
t
b

speci"c damping capacity of beam material
W speci"c damping capacity
WFID

0
damping due to "rst impact only

f damping ratio
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